Apoptosis or programmed cell death can be caused by a number of different factors involving two basic pathways. The extrinsic pathway involves the binding of “death inducing ligands” to cell surface receptors or the induction by cytotoxic factors. During the process chromatin undergoes a phase change from a heterogeneous genetically active network in a highly condensed state that is resistant to disruption to a state in which it can be cleaved into small fragments. The terminal step of “apoptotic” cell death is accomplished by autophagic or heterophagic processes.

Medicinal agents can have cytotoxicity as an unwanted side effect. Drugs elicit their effects through a series of chemical reagents to the 96-well cell plates. The instrument was used to remove media, as well as dispense reagents to the different steps of several different CELLestial™ assays.

The description of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates. The identification of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates.

This basic toxicity assay determines the toxicity of the cell line. The assay is a simple method to test for differences in the sensitivity of several cell cultures with regard to the characteristics of the cell line. The assay is sensitive to certain sources of cell culture functionality. For example, the assay is sensitive to the content of certain cell culture reagents.

Cells are removed by washing the plates and the media is aspirated. The measurement of the fluorescence intensity of the dye is determined with an excitation of 340 nm and an emission of 530 nm. The media was aspirated and Mito-ID™ dye was added using the SOLA. After a 15-minute incubation, excess dye was removed by washing. The fluorescence was then determined using an excitation of 480 nm and an emission of 530 nm.

Abstract

Apoptosis or programmed cell death can be caused by a number of different factors involving two basic pathways. The extrinsic pathway involves the binding of “death inducing ligands” to cell surface receptors or the induction by cytotoxic factors. During the process chromatin undergoes a phase change from a heterogeneous genetically active network in a highly condensed state that is resistant to disruption to a state in which it can be cleaved into small fragments. The terminal step of “apoptotic” cell death is accomplished by autophagic or heterophagic processes.

Medicinal agents can have cytotoxicity as an unwanted side effect. Drugs elicit their effects through a series of chemical reagents to the 96-well cell plates. The instrument was used to remove media, as well as dispense reagents to the different steps of several different CELLestial™ assays.

The description of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates. The identification of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates.

This basic toxicity assay determines the toxicity of the cell line. The assay is a simple method to test for differences in the sensitivity of several cell cultures with regard to the characteristics of the cell line. The assay is sensitive to certain sources of cell culture functionality. For example, the assay is sensitive to the content of certain cell culture reagents.

Cells are removed by washing the plates and the media is aspirated. The measurement of the fluorescence intensity of the dye is determined with an excitation of 340 nm and an emission of 530 nm. The media was aspirated and Mito-ID™ dye was added using the SOLA. After a 15-minute incubation, excess dye was removed by washing. The fluorescence was then determined using an excitation of 480 nm and an emission of 530 nm.

Abstract

Apoptosis or programmed cell death can be caused by a number of different factors involving two basic pathways. The extrinsic pathway involves the binding of “death inducing ligands” to cell surface receptors or the induction by cytotoxic factors. During the process chromatin undergoes a phase change from a heterogeneous genetically active network in a highly condensed state that is resistant to disruption to a state in which it can be cleaved into small fragments. The terminal step of “apoptotic” cell death is accomplished by autophagic or heterophagic processes.

Medicinal agents can have cytotoxicity as an unwanted side effect. Drugs elicit their effects through a series of chemical reagents to the 96-well cell plates. The instrument was used to remove media, as well as dispense reagents to the different steps of several different CELLestial™ assays.

The description of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates. The identification of cytotoxic effects is a critical element of the drug discovery process. Bioassays are necessary to evaluate the potential toxicity of the drug candidates.

This basic toxicity assay determines the toxicity of the cell line. The assay is a simple method to test for differences in the sensitivity of several cell cultures with regard to the characteristics of the cell line. The assay is sensitive to certain sources of cell culture functionality. For example, the assay is sensitive to the content of certain cell culture reagents.